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IRI’s new Forecasting system 

and Introduction of PyCPT

tools For regional Forecasting
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IRI began routinely providing calibrated user-oriented seasonal climate
forecasts since the late 1990s based on a 2-tiered multi-model ensemble
dynamical prediction system.

Old system
New system

Real-time IRI’s Probabilistic Seasonal 

Forecasting 



Old IRI forecast New IRI forecast

GCM used (Predicators) 2-tier (uncoupled)
ECHAM 4.5, CCM3.6, COLA, 
GFDL,CFSv2

1-tier (coupled)
NMME models

Observed data used 
(Predictand)

Precip: CMAP
Temp: CAMS

Precip: CPC-CMAP
Temp: GCHN updated

Forecast Resolution 2.5 degree grid 1 degree grid

Calibration method • Pattern-based correction 
of ensemble means
- PC Regression based on 
tropical precip EOFs
- Spread estimate from 
historical forecasts with 
forecast SST
• Equal weighting of 
corrected models
• Parametric forecast 
probabilities (T - Gaussian, 
P - transformed Gaussian)

Extended Logistic 
Regression (Non-Gaussian) 
at grid point level.

Dry mask Forecast are only produced 
when the climatology 
being more than 30 mm 
precipitation in any given 
season

Forecast are only produced 
when the at least 10% of 
the training sample are 
non-zero.

Making Flexible forecast Used mean and SD of the 
forecast, then use 
parametric approach

Integrated part of the ELR 
method

New system of seasonal forecast has 

been operational from April, 2017

Advances in Real-time IRI’s Probabilistic Seasonal 

Forecasting 



NMME datasets

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/



Flow chart of new forecast methodology
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 Logistic regression (LR), a nonlinear

regression method where probability

itself can be considered as the

predictand rather than a measurable

physical quantity, is an alternative

model for Gaussian approach.

 Logistic Regression is a Machine

Learning algorithm which is used for

the classification problems, it is a

predictive analysis algorithm and based

on the concept of probability

 Unlike linear regression, no need to

fulfill assumptions of linearity,

normality and homoscedasticity.

Logistic Regression
Logistic regression is well famous method to make 
probability forecast 

Where p is the (cumulative) probability of not exceeding 
the quantile q

IRI’s New Calibration Method
Categorical forecast



Modification of LR Method
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This predictor choice yields slightly better, but, overall,

very similar forecasts, to equations using the untrans-

formed ensemble mean as the single predictor. Adding

the ensemble standard deviation or its square root, alone

or in combination with the ensemble mean, did not

improve either the separate-equation or the unified fore-

casts, a result consistent with the medium-range precip-

itation forecast results reported by Hamill et al . (2004)

and Wilks and Hamill (2007), although ensemble spread

has been found to be a significant logistic regression pre-

dictor for shorter lead times (Hamill et al ., 2008; Wilks

and Hamill, 2007). Unification of the logistic regressions

for all forecast quantiles was achieved using the square

root of the forecast quantile as the sole predictor in the

function g(q):

g(q) = b2

√
q (9)

This choice for g(q) was entirely empirical, but yielded

substantially better forecasts than did g(q) = b2 q, and

only marginally less accurate forecasts overall than those

made using g(q) = b2
√

q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-

tion (1)) for a given location and day required fitting as

many as 14 parameters (seven equations with two param-

eters each), whereas the unified approach (Equation (5))

required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified

logistic regressions

Before presenting the forecast verification statistics, it

is worthwhile to illustrate the gains in logical consis-

tency and comprehensiveness that derive from using

the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-

cal quantiles, for the 23 November 2001 forecast made

for Minneapolis, and fitted using the full 25 year train-

ing sample, which pertains to accumulated precipita-

tion the period 28 November-2 December 2001. Here

f (x) = − 0.157 − 1.122
√

xens, so that all of the regres-

sion lines are parallel, with slope b1 = − 1.122 mm− 1/ 2.

Here also g(q) = + 0.836
√

q, and the positive regression

parameter b2 = 0.836 mm− 1/ 2 ensures that the regres-

sion intercepts b0
∗ (q) (Equation (7)) produce forecast

probabilities, given any ensemble mean, that are strictly

increasing in q. It is thus impossible for the specified

cumulative probability pertaining to a smaller precipita-

tion accumulation threshold to be larger than that for a

larger threshold.

In contrast, Figure 1(b) shows the six corresponding

individual logistic regressions, fitted separately for the

same six climatological quantiles, using Equation (3)

in each case. Here nothing constrains the six fitted

equations to be mutually consistent, and indeed they

clearly are not. The equations for q0.10 and q0.33 happen

to exhibit similar slopes, as do the equations for q0.50,

q0.67 and q0.95, whereas these two groups of regressions

are inconsistent with each other, and the equation for

q0.90 is clearly inconsistent with all of the others. As a

practical matter these equations would not yield jointly

nonsensical predictions for relatively small values of

xens, but for xens larger than about 3 mm (the point

at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be

incoherent. Indeed, unless the separate logistic regression

equations are exactly parallel, logically inconsistent sets

of forecasts are inevitable for sufficiently extreme values

of the predictor. Note that the plotted regressions in

Figure 1(a) have been chosen to match the threshold

quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,

for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield

logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because

these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston

and Smith, 2003; Stephenson et al ., 2005), and these and

other ensemble-MOS methods have been compared in

an idealized setting in Wilks (2006b). Wilks and Hamill

(2007) examined the performance of the best of these

methods using ensembles taken from the GFS refore-

cast dataset (Hamill et al., 2006), concluding that non-

homogeneous Gaussian regression (Gneiting et al., 2005)

generally performed best for medium-range temperature

forecasts, and that logistic regression, a conventional sta-

tistical method, was generally best for daily temperature

forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic

regressions have been found to perform well, notable dif-

ficulties arise from the conventional approach to deriving

these equations. Specifically, separate prediction equa-

tions are conventionally derived to predict probabili-

ties corresponding to different predictand thresholds. For

example, different logistic regression equations would

generally be used to forecast probabilities that future pre-

cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,

even though the same predictor variables (which could

be, for example, ensemble mean and ensemble standard

deviation) might be used in each of the forecast equa-

tions. One problem with this approach is that probabili-

ties for intermediate predictand thresholds (e.g. 15 mm

in the above example) must be interpolated from the

finite collection MOS equations. In addition, fitting sepa-

rate equations for different thresholds requires estimation

of a relatively large number of regression parameters in

total, which may lead to poor estimates unless the avail-

able training sample is quite large. However, the most

problematic consequence of separate MOS equations for

different predictand thresholds is that forecasts derived

from the different equations are not constrained to be

mutually consistent. For example, because of sampling

variations the forecast probability for precipitation at or

below 20 mm may be smaller than the forecast probabil-

ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-

ing the logistic regression structure to allow prediction of

probabilities for all thresholds simultaneously, by includ-

ing the predictand threshold itself as one of the regression

predictors. In addition to providing smoothly-varying

forecast probabilities for any and all predictand thresh-

olds, the approach requires fitting substantially fewer

parameters as compared to many separate logistic regres-

sions, and ensures that nonsense negative probabilities

cannot be produced. This kind of extension to ordinary

logistic regression is not a new concept, and indeed is

an instance of the well-known statistical approach called

generalized linear modeling (McCullagh and Nelder,

1989). Section 2 outlines use of logistic regression in

the context of MOS forecasts, and the extension pro-

posed here. Section 3 describes the ensemble forecast

data used to illustrate the procedure, which are the same

GFS reforecasts (Hamill et al ., 2006) used by Wilks and

Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-

tional single-integration dynamical forecasts. Section 4

presents representative forecast performance results, and

Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that

is well suited to probability forecasting, i.e. situations

where the predictand is a probability rather than a mea-

surable physical quantity. Denoting as p the probability

being forecast, a logistic regression takes the form:

p =
exp[f (x)]

1 + exp[f (x)]
(1)

where f (x) is a linear function of the predictor variables,

x,

f (x) = b0 + b1x1 + b2x2 + ·· · + bK xK (2)

The mathematical form of the logistic regression

equation yields ‘S-shaped’ prediction functions that are

strictly bounded on the unit interval (0 < p < 1). The

name logistic regression follows from the regression

equation being linear on the logistic, or log-odds scale:

ln
p

1 − p
= f (x) (3)

Even though the form of Equation (3) is linear, stan-

dard linear regression methods cannot be applied to esti-

mate the regression parameters because in the training

data the predictand values are binary (i.e. 0 or 1), so

that the left-hand side of Equation (3) is not defined.

Rather, the parameters are generally estimated using an

iterative maximum likelihood procedure (e.g. McCullagh

and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been

in the statistical post-processing of ensemble forecasts of

continuous predictands such as temperature or precipita-

tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks

and Hamill, 2007), for which the forecast probabilities

pertain to the occurrence of the verification, V , above or

below a prediction threshold corresponding a particular

data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,

x1, is generally the ensemble mean, and to the extent that

ensemble spread provides significant predictive informa-

tion a second predictor x2 may involve ensemble standard

deviation, either alone (Hamill et al., 2008) or multiplied

by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS

post-processing by fitting separate equations for selected

predictand quantile thresholds. For example, consider

probability forecasts for both the lower tercile (the data

value defining the boundary between the lower third and
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the remainder of a distribution), q1/ 3, and upper tercile,

q2/ 3, of the climatological distribution of a predictand.

The two threshold probabilities, p1/ 3 = Pr {V ≤ q1/ 3)

and p2/ 3 = Pr {V ≤ q2/ 3) would be forecast using the

two logistic regression functions ln[p1/ 3/ (1 − p1/ 3)] =
f 1/ 3(x ) and ln[p2/ 3/ (1 − p2/ 3)] = f 2/ 3(x ). Unless the

regression functions f 1/ 3(x ) and f 2/ 3(x ) are exactly par-

allel (i.e. they differ only with respect to their intercept

parameters, b0) they will cross for some values of the pre-

dictor(s) x, leading to the nonsense result of p1/ 3 > p2/ 3,

implying Pr {q1/ 3 < V < q2/ 3} < 0. Other problems with

this approach are that estimating probabilities correspond-

ing to threshold quantiles for which regressions have not

been fitted requires some kind of interpolation, yet fitting

many prediction equations requires that a large number

of parameters be estimated.

All of these problems can be alleviated if a well-

fitting regression can be estimated simultaneously for all

forecast quantiles. A potentially promising approach is to

extend Equations (1) and (3) to include a nondecreasing

function g(q) of the threshold quantile q, unifying

equations for individual quantiles into a single equation

that pertains to any quantile:

p(q) =
exp[f (x) + g(q)]

1 + exp[f (x) + g(q)]
(5)

or,

ln
p(q)

1 − p(q)
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies

parallel functions of the predictors x, whose intercepts

b0
∗ (q) increase monotonically with the threshold quan-

tile, q:

ln
p(q)

1 − p(q)
= b0 + g(q) + b1x1 + b2x2 + ·· · + bK xK

= b∗
0(q) + b1x1 + b2x2 + ·· · + bK xK (7)

The question from a practical perspective is whether

a functional form for g(q) can be specified, for which

Equation (5) provides forecasts of competitive quality to

those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same

as those used in Wilks and Hamill (2007). Ensemble

forecasts have been taken from the Hamill et al . (2006)

reforecast dataset, which contains retrospectively recom-

puted, 15-member ensemble forecasts beginning in Jan-

uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-

izontal resolution) version of the U.S. National Centers

for Environmental Prediction Global Forecasting Model

(GFS) (Caplan et al ., 1997). Precipitation forecasts for

days 6–10 were aggregated to yield medium-range

ensemble forecasts for this lead time, through Febru-

ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast

precipitation at 19 U.S. first-order National Weather Ser-

vice stations: Atlanta, Georgia (ATL); Bismarck, North

Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,

New York (BUF); Washington, DC (DCA); Denver,

Colorado (DTW); Great Falls, Montana (GTF); Los

Angeles, California (LAX); Miami, Florida (MIA); Min-

neapolis, Minnesota (MSP); New Orleans, Louisiana

(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona

(PHX); Seattle, Washington (SEA); San Francisco, Cali-

fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,

Missouri (STL). These subjectively chosen stations pro-

vide reasonably uniform and representative coverage of

the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-

cipitation were made for the seven climatological quan-

tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33

(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90

(upper decile) and q0.95 (95th percentile); estimated using

the full 26 year observation data set. The verification

data were constructed from running 5-day totals of the

midnight-to-midnight daily precipitation accumulations.

The climatological quantiles were tabulated locally, both

by forecast date and individually by verifying station, in

order to avoid artificial skill deriving from correct ‘fore-

casting’ of variations in climatological values (Hamill and

Juras, 2006). For many locations and times of year, two

or more of these seven quantiles of 5-day accumulated

precipitation are zero, and in these cases only the sin-

gle zero quantile corresponding to the largest probability

was used in regression fitting and verification of fore-

casts. For example, if 25% of the climatological 5-day

precipitation values for a particular location and date are

zero, then both q0.05 and q0.10 are equal to 0 mm, but

only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast

equations were fitted using 1, 2, 5, 15, and 25 years

of training data, and evaluated using cross validation

so that all forecasts are out-of-sample. Separate forecast

equations were fitted for each day of the 26 year data

period, using a training-data window of ± 45 days around

the forecast date. To the extent possible, training years

were chosen as those immediately preceding the year

omitted for cross validation, and to the extent that this

was not possible the nearest subsequent years were used.

For example, equations used to forecast from 1 March,

1980 using 1 year of training data were fitted using data

from 15 January through 15 April, 1979.

These procedures were followed both for individual

logistic regressions, Equation (1), and the unified formu-

lation in Equation (5), although as noted above only one

quantile corresponding to zero accumulated precipitation

was forecast and verified in any one instance. Only a sin-

gle ensemble predictor, the square-root of the ensemble

mean, was used in the function f (x):

f (x) = b0 + b1 xens (8)
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collection of threshold probabilities rather than full forecast probability

distributions.

 However, the most problematic consequence of separate equations for

different predictand thresholds is that forecasts derived from the

different equations are not constrained to be mutually consistent.
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This predictor choice yields slightly better, but, overall,

very similar forecasts, to equations using the untrans-

formed ensemble mean as the single predictor. Adding

the ensemble standard deviation or its square root, alone

or in combination with the ensemble mean, did not

improve either the separate-equation or the unified fore-

casts, a result consistent with the medium-range precip-

itation forecast results reported by Hamill et al . (2004)

and Wilks and Hamill (2007), although ensemble spread

has been found to be a significant logistic regression pre-

dictor for shorter lead times (Hamill et al ., 2008; Wilks

and Hamill, 2007). Unification of the logistic regressions

for all forecast quantiles was achieved using the square

root of the forecast quantile as the sole predictor in the

function g(q):

g(q) = b2

√
q (9)

This choice for g(q) was entirely empirical, but yielded

substantially better forecasts than did g(q) = b2 q, and

only marginally less accurate forecasts overall than those

made using g(q) = b2
√

q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-

tion (1)) for a given location and day required fitting as

many as 14 parameters (seven equations with two param-

eters each), whereas the unified approach (Equation (5))

required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified

logistic regressions

Before presenting the forecast verification statistics, it

is worthwhile to illustrate the gains in logical consis-

tency and comprehensiveness that derive from using

the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-

cal quantiles, for the 23 November 2001 forecast made

for Minneapolis, and fitted using the full 25 year train-

ing sample, which pertains to accumulated precipita-

tion the period 28 November-2 December 2001. Here

f (x) = − 0.157 − 1.122
√

xens, so that all of the regres-

sion lines are parallel, with slope b1 = − 1.122 mm− 1/ 2.

Here also g(q) = + 0.836
√

q, and the positive regression

parameter b2 = 0.836 mm− 1/ 2 ensures that the regres-

sion intercepts b0
∗ (q) (Equation (7)) produce forecast

probabilities, given any ensemble mean, that are strictly

increasing in q. It is thus impossible for the specified

cumulative probability pertaining to a smaller precipita-

tion accumulation threshold to be larger than that for a

larger threshold.

In contrast, Figure 1(b) shows the six corresponding

individual logistic regressions, fitted separately for the

same six climatological quantiles, using Equation (3)

in each case. Here nothing constrains the six fitted

equations to be mutually consistent, and indeed they

clearly are not. The equations for q0.10 and q0.33 happen

to exhibit similar slopes, as do the equations for q0.50,

q0.67 and q0.95, whereas these two groups of regressions

are inconsistent with each other, and the equation for

q0.90 is clearly inconsistent with all of the others. As a

practical matter these equations would not yield jointly

nonsensical predictions for relatively small values of

xens, but for xens larger than about 3 mm (the point

at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be

incoherent. Indeed, unless the separate logistic regression

equations are exactly parallel, logically inconsistent sets

of forecasts are inevitable for sufficiently extreme values

of the predictor. Note that the plotted regressions in

Figure 1(a) have been chosen to match the threshold

quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,

for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield

logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because

these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston

and Smith, 2003; Stephenson et al., 2005), and these and

other ensemble-MOS methods have been compared in

an idealized setting in Wilks (2006b). Wilks and Hamill

(2007) examined the performance of the best of these

methods using ensembles taken from the GFS refore-

cast dataset (Hamill et al., 2006), concluding that non-

homogeneous Gaussian regression (Gneiting et al ., 2005)

generally performed best for medium-range temperature

forecasts, and that logistic regression, a conventional sta-

tistical method, was generally best for daily temperature

forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic

regressions have been found to perform well, notable dif-

ficulties arise from the conventional approach to deriving

these equations. Specifically, separate prediction equa-

tions are conventionally derived to predict probabili-

ties corresponding to different predictand thresholds. For

example, different logistic regression equations would

generally be used to forecast probabilities that future pre-

cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,

even though the same predictor variables (which could

be, for example, ensemble mean and ensemble standard

deviation) might be used in each of the forecast equa-

tions. One problem with this approach is that probabili-

ties for intermediate predictand thresholds (e.g. 15 mm

in the above example) must be interpolated from the

finite collection MOS equations. In addition, fitting sepa-

rate equations for different thresholds requires estimation

of a relatively large number of regression parameters in

total, which may lead to poor estimates unless the avail-

able training sample is quite large. However, the most

problematic consequence of separate MOS equations for

different predictand thresholds is that forecasts derived

from the different equations are not constrained to be

mutually consistent. For example, because of sampling

variations the forecast probability for precipitation at or

below 20 mm may be smaller than the forecast probabil-

ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-

ing the logistic regression structure to allow prediction of

probabilities for all thresholds simultaneously, by includ-

ing the predictand threshold itself as one of the regression

predictors. In addition to providing smoothly-varying

forecast probabilities for any and all predictand thresh-

olds, the approach requires fitting substantially fewer

parameters as compared to many separate logistic regres-

sions, and ensures that nonsense negative probabilities

cannot be produced. This kind of extension to ordinary

logistic regression is not a new concept, and indeed is

an instance of the well-known statistical approach called

generalized linear modeling (McCullagh and Nelder,

1989). Section 2 outlines use of logistic regression in

the context of MOS forecasts, and the extension pro-

posed here. Section 3 describes the ensemble forecast

data used to illustrate the procedure, which are the same

GFS reforecasts (Hamill et al., 2006) used by Wilks and

Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-

tional single-integration dynamical forecasts. Section 4

presents representative forecast performance results, and

Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that

is well suited to probability forecasting, i.e. situations

where the predictand is a probability rather than a mea-

surable physical quantity. Denoting as p the probability

being forecast, a logistic regression takes the form:

p =
exp[f (x)]

1 + exp[f (x)]
(1)

where f (x) is a linear function of the predictor variables,

x,

f (x) = b0 + b1x1 + b2x2 + ·· · + bK xK (2)

The mathematical form of the logistic regression

equation yields ‘S-shaped’ prediction functions that are

strictly bounded on the unit interval (0 < p < 1). The

name logistic regression follows from the regression

equation being linear on the logistic, or log-odds scale:

ln
p

1 − p
= f (x) (3)

Even though the form of Equation (3) is linear, stan-

dard linear regression methods cannot be applied to esti-

mate the regression parameters because in the training

data the predictand values are binary (i.e. 0 or 1), so

that the left-hand side of Equation (3) is not defined.

Rather, the parameters are generally estimated using an

iterative maximum likelihood procedure (e.g. McCullagh

and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been

in the statistical post-processing of ensemble forecasts of

continuous predictands such as temperature or precipita-

tion (e.g. Hamill et al ., 2004; Hamill et al ., 2008; Wilks

and Hamill, 2007), for which the forecast probabilities

pertain to the occurrence of the verification, V , above or

below a prediction threshold corresponding a particular

data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,

x1, is generally the ensemble mean, and to the extent that

ensemble spread provides significant predictive informa-

tion a second predictor x2 may involve ensemble standard

deviation, either alone (Hamill et al ., 2008) or multiplied

by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS

post-processing by fitting separate equations for selected

predictand quantile thresholds. For example, consider

probability forecasts for both the lower tercile (the data

value defining the boundary between the lower third and
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the remainder of a distribution), q1/ 3, and upper tercile,

q2/ 3, of the climatological distribution of a predictand.

The two threshold probabilities, p1/ 3 = Pr {V ≤ q1/ 3)

and p2/ 3 = Pr {V ≤ q2/ 3) would be forecast using the

two logistic regression functions ln[p1/ 3/ (1 − p1/ 3)] =
f 1/ 3(x ) and ln[p2/ 3/ (1 − p2/ 3)] = f 2/ 3(x ). Unless the

regression functions f 1/ 3(x ) and f 2/ 3(x ) are exactly par-

allel (i.e. they differ only with respect to their intercept

parameters, b0) they will cross for some values of the pre-

dictor(s) x, leading to the nonsense result of p1/ 3 > p2/ 3,

implying Pr {q1/ 3 < V < q2/ 3} < 0. Other problems with

this approach are that estimating probabilities correspond-

ing to threshold quantiles for which regressions have not

been fitted requires some kind of interpolation, yet fitting

many prediction equations requires that a large number

of parameters be estimated.

All of these problems can be alleviated if a well-

fitting regression can be estimated simultaneously for all

forecast quantiles. A potentially promising approach is to

extend Equations (1) and (3) to include a nondecreasing

function g(q) of the threshold quantile q, unifying

equations for individual quantiles into a single equation

that pertains to any quantile:

p(q) =
exp[f (x) + g(q)]

1 + exp[f (x) + g(q)]
(5)

or,

ln
p(q)

1 − p(q)
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies

parallel functions of the predictors x, whose intercepts

b0
∗ (q) increase monotonically with the threshold quan-

tile, q:

ln
p(q)

1 − p(q)
= b0 + g(q) + b1x1 + b2x2 + ·· · + bK xK

= b∗
0(q) + b1x1 + b2x2 + ·· · + bK xK (7)

The question from a practical perspective is whether

a functional form for g(q) can be specified, for which

Equation (5) provides forecasts of competitive quality to

those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same

as those used in Wilks and Hamill (2007). Ensemble

forecasts have been taken from the Hamill et al . (2006)

reforecast dataset, which contains retrospectively recom-

puted, 15-member ensemble forecasts beginning in Jan-

uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-

izontal resolution) version of the U.S. National Centers

for Environmental Prediction Global Forecasting Model

(GFS) (Caplan et al ., 1997). Precipitation forecasts for

days 6–10 were aggregated to yield medium-range

ensemble forecasts for this lead time, through Febru-

ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast

precipitation at 19 U.S. first-order National Weather Ser-

vice stations: Atlanta, Georgia (ATL); Bismarck, North

Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,

New York (BUF); Washington, DC (DCA); Denver,

Colorado (DTW); Great Falls, Montana (GTF); Los

Angeles, California (LAX); Miami, Florida (MIA); Min-

neapolis, Minnesota (MSP); New Orleans, Louisiana

(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona

(PHX); Seattle, Washington (SEA); San Francisco, Cali-

fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,

Missouri (STL). These subjectively chosen stations pro-

vide reasonably uniform and representative coverage of

the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-

cipitation were made for the seven climatological quan-

tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33

(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90

(upper decile) and q0.95 (95th percentile); estimated using

the full 26 year observation data set. The verification

data were constructed from running 5-day totals of the

midnight-to-midnight daily precipitation accumulations.

The climatological quantiles were tabulated locally, both

by forecast date and individually by verifying station, in

order to avoid artificial skill deriving from correct ‘fore-

casting’ of variations in climatological values (Hamill and

Juras, 2006). For many locations and times of year, two

or more of these seven quantiles of 5-day accumulated

precipitation are zero, and in these cases only the sin-

gle zero quantile corresponding to the largest probability

was used in regression fitting and verification of fore-

casts. For example, if 25% of the climatological 5-day

precipitation values for a particular location and date are

zero, then both q0.05 and q0.10 are equal to 0 mm, but

only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast

equations were fitted using 1, 2, 5, 15, and 25 years

of training data, and evaluated using cross validation

so that all forecasts are out-of-sample. Separate forecast

equations were fitted for each day of the 26 year data

period, using a training-data window of ± 45 days around

the forecast date. To the extent possible, training years

were chosen as those immediately preceding the year

omitted for cross validation, and to the extent that this

was not possible the nearest subsequent years were used.

For example, equations used to forecast from 1 March,

1980 using 1 year of training data were fitted using data

from 15 January through 15 April, 1979.

These procedures were followed both for individual

logistic regressions, Equation (1), and the unified formu-

lation in Equation (5), although as noted above only one

quantile corresponding to zero accumulated precipitation

was forecast and verified in any one instance. Only a sin-

gle ensemble predictor, the square-root of the ensemble

mean, was used in the function f (x):

f (x) = b0 + b1 xens (8)
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Extended Logistic Regression (ELR)

Extending Logistic Regression:

Extending LR (ELR) by including the predictand threshold as an

additional predictor (link function g itself function of the quantile q),

allows the derivation of full predictive distributions to avoid the problem

of potentially incoherent forecast probabilities (Wilks,2009).

Cumulative probability for a smaller predictand threshold cannot be

larger than the probability for a larger threshold.

Where

Wilks, D., 2009: Extending logistic regression to provide full-probability-distribution MOS fore- casts. Meteor. Appl., 16, 361–368. 



Spatial Smoothing of final forecast: why & how?

Smoothing with Kernel function (Gaussian) with a rectangle of size 9 by 9.
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Hindcast Skill Map (1982-2010)
http://iridl.ldeo.columbia.edu/maproom/Global/Forecasts/index.html#tabs-2
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Flexible forecast format



IRI’s Experimental Precipitation Sub-seasonal Forecasts
http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/index.html

http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/index.html


Next Generation (NextGen) Regional 

Forecasting

The use of an objective seasonal forecast procedure which
is defined as a traceable, reproducible, and well-
documented set of steps that allows the quantification of
forecast quality, are preferred and recommended by the
World Meteorological Organization in their recent seasonal
forecast guidance.

The Next Generation (NextGen) seasonal forecast system is a
systematic and objective approach. It enables calibration,
combination, and verification of objective climate forecasts
from the state-of-the-art general circulation models (GCM)
of the North American Multi-Model Ensemble project.



• Climate Predictability tool (CPT) is an easy-to-use software 
for making seasonal forecast using either empirical 
predictors, of the outputs from GCM.

• Developed and maintain by Dr. Simon Mason.

• CPT available for Windows 95+ and Linux Batch version.



NextGen Approach

NMME model 1
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Calibration

Calibration

Calibration • Need to run CPT multiple times.
• We need a system which produce skill maps

and forecasts for multiple models in a single
run.



PyCPT is a Python library that provides an interface and extra functionalities to IRI's Climate
Predictability Tool (CPT), a widely used research and application Model Output
Statistics/Prediction toolbox.

PyCPT: Python script to run CPT batch 
version

PyCPT Layout

PyCPT Structure



PyCPT: Download

https://bitbucket.org/py-iri/iri-pycpt/src/master/

https://bitbucket.org/py-iri/iri-pycpt/src/master/


PyCPT: Installation

For Linux users:

The user will need to install Anaconda (Python3), the Climate 
Predictability Tool (batch version) and the Python extension of CPT 
(PyCPT).

For Window users:

install a Virtual Machine with all needed packages and use PyCPT
Ubuntu

Any recent (< 2 years) Intel Processor should be able to run a Virtual 
Machine. The PC should have at least 4GB of RAM installed, but 
preferably more than 8GB You should have at least 20GB of free 
space to install the virtual machine and software.

For details: https://bitbucket.org/py-iri/iri-pycpt/wiki/Home

https://bitbucket.org/py-iri/iri-pycpt/wiki/Home


PyCPT: Example plots

Skill maps

Domain

EOF maps



Live Demo!



#NextGen Maproom: Example of Meteo
Rwanda

http://maproom.meteorwanda.gov.rw/maproom/Climatology/Climate_Forecast/Forecast.html

http://maproom.meteorwanda.gov.rw/maproom/Climatology/Climate_Forecast/Forecast.html


#NextGen Maproom: Example of Meteo
Rwanda



Challenges in producing 

forecast
Non-availability of GCMs in real time.

GCM’s version changes.

Need update PyCPT scripts.



Concluding Remark

ELR based non-Gaussian calibration method introduced in the 
real-time seasonal forecast at IRI.

It is a more robust method compared to other calibration 
method based on the Gaussian assumption for precipitation.

For regional forecast, NextGen system is introduced by IRI by 
the recommendation of WMO.

PyCPT is the tool for NextGen where CPT can run multiples 
times in a single run.

Very easy to use through Jupyter notebook.

PyCPT keep on updating based on user’s feedback and GCM 
availability.



Thanks!
nachiketa@iri.Columbia.edu

mailto:nachiketa@iri.Columbia.edu

